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Abstract
Angstrom v1 is a non-custodial decentralized exchange built for
Ethereum as a Uniswap v4 hook. Angstrom improves upon ex-
isting decentralized exchange designs by holding high-frequency
off-chain auctions in parallel to Ethereum block production, redis-
tributing arbitrage value to liquidity providers and swappers while
maintaining composability with the rest of the ecosystem.

1 Introduction
Decentralized exchange (DEX) protocols have evolved rapidly over
the past several years, starting with constant product automated
market makers (AMMs) like Uniswap v1, expanding to the more
generalizable ERC-20 pairs of Uniswap v2 [1], and introducing
the concept of concentrated liquidity in Uniswap v3 [2]. Most re-
cently, Uniswap v4 [3] adds the notion of hooks, which supply an
architectural framework for customizable pool behavior. However,
two fundamental issues in decentralized exchange design remained
unresolved:
(1) Loss-Versus-Rebalancing: Liquidity providers (LPs) in typ-

ical AMMs suffer losses when prices on more liquid external
markets deviate from on-chain pool prices, as arbitrageurs
execute swaps to pick off stale quotes that the AMM provides.
As described in the LVR (Loss-Versus-Rebalancing) literature
[4], such arbitrage imposes a systematic and quantifiable cost
on on-chain LPs, diminishing the attractiveness and overall
viability of providing liquidity.

(2) Sandwich Attacks on Swappers: Block proposers can re-
order transactions for profit, incentivizing arbitrage from

swappers in the form of sandwiching. This creates an uneven
playing field for users executing trades, leading to billions of
dollars in value extracted from unsuspecting swappers.

Angstrom is a new DEX protocol, built as a Uniswap v4 hook,
that tackles these issues through a fundamentally different model
of sequencing trades and redirecting arbitrage value. Specifically,
it integrates two auctions for each pool that run in parallel to
Ethereum block production:
• The top-of-block auction is a first-price auction for LVR

value, awarding a single winning bidder the option to trade
against the AMM at zero swap fees. The winning bid is then
split between the AMM ticks that provided active liquidity
in the swap such that the ticks receiving the bid trade at the
same effective execution price. This distributes the arbitrage
value arising from intra-block price deviations on external
reference venues (e.g. Binance) back to on-chain liquidity
providers.

• The uniform-clearing batch auction is executed after-
wards, where all remaining limit orders in the off-chain order
book are cleared at the same price along with the underlying
AMM liquidity in the state resulting from executing the top-
of-block swap against it. By batching user orders in a single
clearing event, Angstrom obviates malicious reordering of
transactions, thereby eliminating sandwich attacks on user
swaps.

Angstrom’s off-chain infrastructure orchestrates these auctions
in a decentralized, censorship-resistant fashion. Orders in both
auctions are signed EIP-712 meta-transactions and are considered
for inclusion by Angstrom validators upon being received and

1



Karthik Srinivasan, Ludwig Thouvenin, and Ciamac Moallemi

Flow of Value (status quo)

Proposer

Bid for Block Selection 

(majority of arbitrage value is bid)

Builder 1 Builder 2 Builder 3

Bid for Block Inclusion 

(majority of arbitrage value is bid)

Searchers

CEX-DEX Arbitrage Sandwich-Extractable Value

LPs Swappers

I. Competition in the MEV supply chain directs value from LPs and
swappers to block proposers

Flow of Value (with Angstrom)

Proposer

Minimum Priority Fee

Builder 1 Builder 2 Builder 3

Pay for Block Inclusion 

(only minimum priority fee is paid)

Angstrom Validators

Compete in Angstrom Auctions

Searchers

LPs Swappers

Top-of-block

Bid Rebate

Batch Auction

JIT Liquidity

II. Angstrom redirects arbitrage value back to LPs and swappers

Figure 1. MEV supply-chain flow of value with and without Angstrom. Arrow thickness indicates value magnitude.

validated. The aggregate set of valid orders, determined by the
consensus protocol, is then used to derive a canonical Angstrom
transaction for the given slot which is then submitted for on-chain
settlement. The canonical transaction is an aggregation of all filled
orders in both auctions over all Angstrom-supported pools. The
exact clearing per pool is determined by selecting the winning top-
of-block order, computing the resultant AMM state after the top-
of-block swap has executed, then executing the uniform-clearing
batch auction with all non-top-of-block orders on the computed
AMM state. The resultant clearing event is compressed into one
composite swap through the pool, a list of per-tick fee updates, and
a list of filled orders to settle at their respective quantities. Liquidity
itself is stored in specialized pools deployed on the Uniswap v4
Pool Manager contract, thereby inheriting the capital efficiency of
Uniswap v3’s concentrated liquidity design, while also leveraging
the new extensibility and gas efficiencies inherited from Uniswap
v4’s singleton architecture.

With this model, Angstrom fundamentally reshapes the capture
and distribution of arbitrage value in decentralized trading. Rather
than allowing block producers to maximally profit from arbitrage
at the expense of LPs and swappers, Angstrom channels market
competition to an application-controlled execution layer. This compe-
tition enables value to flow back to adversely-selected participants
within the system, shown explicitly in fig. 1.

Crucially, through determining order execution on the union of
all valid meta-transactions received, the protocol enables cancella-
tions before any on-chain interaction by including cancels as an-
other order type. Since cancellations are handled entirely off-chain
and bear no on-chain footprint, they incur zero gas. Additionally,

should they be submitted prior to Round 1 of the consensus proto-
col, they are guaranteed to properly resolve and cancel the desired
order in the given slot should there be no consensus faults commit-
ted by Angstrom validators. Market makers, therefore, can adjust or
retract quotes in real time, responding to shifting reference prices,
without needing to embed potential cancellation costs into their
spreads.

In the sections that follow, we describe Angstrom’s architecture
and key components in detail. Section 2 introduces the protocol’s
consensus protocol for staked validators. Section 3 outlines how
the off-chain dual-auction design coordinates and enforces the
top-of-block and uniform-clearing batch auctions, while compos-
able interactions remain possible through a post-batch pool-unlock
mechanism. Section 4.1 examines capital-efficient mitigation strate-
gies the protocol can employ against bidder optionality exploitation,
and finally we culminate in a thorough explanation of our smart
contract design in Section 5 along with providing gas benchmarks
to quantify the on-chain execution savings.

2 Consensus
Angstrom utilizes a custom consensus protocol amongst a decen-
tralized set of staked validators1 to ensure the off-chain auctions
are conducted fairly and robustly in parallel to Ethereum block
production. The protocol is responsible for aggregating valid or-
ders, selecting winning top-of-block swaps, executing the uniform-
clearing batch auction on the post-top-of-block AMM state, and

1Economic security can be enforced by an Angstrom-specific staking contract or by
opting into a restaking service, such as EigenLayer[5]

2



Angstrom v1 Whitepaper

Figure 2. We show the consensus protocol proceeding in the happy path with leader 𝜈1. Each validator forms its Round-1 payload by computing its
LocalDigest from its current valid transaction set and appending its set of recent orders seen within the last Δ-interval, shown in 1 . The next signed objects
are emitted at 3 , where each validator computes its MergeDigest from its new valid transaction set and forwards the leader the signed object derived from
the digest and the quorum signatures of other validators’ Round-1 payloads that were used in the computation. Finally, at 4 , the leader aggregates the

Round-3 signed objects, which all share the sameMergeDigest, to produce the Round-4 signed object where MergeDigest★ equals the common
MergedDigest in the Round-3 signed objects. The leader then broadcasts this back to the other validators who can all deterministically derive the canonical

transaction to submit for inclusion.

aggregating all the top-of-block swaps, batch orders, and LP fees
across all supported pools into a single canonical transaction to be
submitted for settlement in each slot. Unlike traditional consensus
systems focused on liveness and partition tolerance, Angstrom’s
consensus protocol is tailored to the demands of high-frequency
auctions, where latency, censorship resistance, and no-optionality
properties are most important.

When one bidder in a common value auction can submit bids
later than other participants, we have what is known as a “last
look” problem—see, e.g., [6, 7]. This timing advantage can give an
unfair informational advantage to that bidder, which undermines
the fairness and efficiency of the auction. Angstrom’s consensus
mechanism is meant to limit the scope and impact of these free
options.2

Each Angstrom slot corresponds to an Ethereum slot. In each slot,
the protocol aims to create a transaction that Angstrom validators
can submit for inclusion in that same block. For the purposes of
this section, we assume that validators are able to get a transaction
included in that block, i.e. there is no censorship from the Ethereum
block proposer.

The protocol coordinates a set of 2𝑓 + 1 Angstrom validators to
jointly finalize and settle a bundle, determining the highest bid in
the priority auctions as well as the set of orders to be cleared in the
uniform-clearing batch auction. This section introduces the consen-
sus protocol’s design, its assumptions and guarantees, and potential

2We discuss the post-consensus option, another flavor of the last look problem that
occurs outside the scope of the consensus protocol, in section 4.1 where we additionally
detail a comprehensive mitigation strategy.

attributable faults that can arise from potentially malfeasant val-
idator behavior.

2.1 Assumptions and Setup
Notational Conventions.

• V = {𝜈1, . . . , 𝜈2𝑓 +1} denotes the validator set, with at most
𝑓 Byzantine participants.

• The network is Δ-synchronous; every message sent by an
honest validator at time 𝑡 is received by every honest peer
no later than 𝑡 + Δ.3

• sign𝜈 (·) is a deterministic ECDSA signature under 𝜈 ’s pub-
lic key.

• For every round 𝑟 ∈ {1, 3, 4} validators emit a single signed
message as part of the consensus protocol.4

𝑚
(𝑟 )
𝜈 =

(
slot, 𝑟 , Payload(𝑟 )𝜈

)
, 𝜎

(𝑟 )
𝜈 = sign𝜈

(
𝑚
(𝑟 )
𝜈

)
,

where the payload is specified below. The pair (𝑚 (𝑟 )𝜈 , 𝜎
(𝑟 )
𝜈 )

is a signed object; Appendix B.2 will treat two conflicting
signed objects as evidence of an equivocation fault.

• S (𝑟 )𝜈 is the multiset of Round 𝑟 signed objects received by
validator 𝜈 from other validators (self-inclusive).

Recent–orders window. A given validator defines their pre-Round-
1 recent-order window as

recent :=
{
orders received in [𝑇 − 6Δ, 𝑇 − 5Δ)

}
.

3For the small, co-located validator set upon launch, Δ can be on the order of tens of
milliseconds, far less than Ethereum’s slot time.
4Only the leader emits a signed message in Round 4
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New orders received in this window may not reach all peers before
the Round-1 cutoff, so they are explicitly forwarded inside the
Round 1 payload.

Quorum Signature Aggregation For a validator 𝜈 and 𝑟 ∈ {1, 3}
define

QuorumSigs(𝑟 )𝜈 =

{
𝜎
(𝑟 )
𝜇 |𝑚 (𝑟 )𝜇 ∈ S (𝑟 )𝜈

}
as the aggregated set of signatures from all Round 𝑟 signed objects
that validator 𝜈 received.

Opaque state commitments. Two deterministic, public algorithms
are assumed to exist:

BuildDigest(M) −→ LocalDigest ∈ {0, 1}256,
BuildMerge(B) −→ MergeDigest ∈ {0, 1}256,

whereM is the multiset of transactions observed by the caller dur-
ing Round 0 and B ∈ {S (1) ,S (3) } is the multiset of either Round 1
signed objects received by the caller or Round 3 signed objects re-
ceived by the leader. If two honest validators input the sameM or
B they obtain identical outputs. Both StateDigest andMergeDigest
are aggregate commitments to the full order book state, where the
former is a local commitment to the union of all orders seen during
Round 0 and the latter is an aggregate commitment inclusive of all
orders in the union of all signed objects received.

2.2 Protocol Description
The protocol proceeds as follows:
Round 0 (Gossip). Validators gossip new place and cancel transac-
tions to their peers. At 𝑡 = 𝑇 − 5Δ every honest 𝜈 deterministically
computes

(LocalDigest𝜈 ,Recent𝜈 ) :=
(
BuildDigest(M𝜈 ), recent

)
,

whereM𝜈 is the multiset of messages received so far. No signed
object is emitted in this round.

Round 1 (Local Build). Validator 𝜈 assembles

Payload(1)𝜈 =
(
LocalDigest𝜈 , Recent𝜈

)
and broadcasts the signed object𝑚 (1)𝜈 with signature 𝜎 (1)𝜈 during
[𝑇 − 5Δ, 𝑇 − 4Δ).
Round 2 (View Relay). To thwart selective forwarding, every
validator re-gossips verbatim copies of all Round-1 signed objects
that arrived before 𝑇 − 4Δ. No fresh message is created, hence no
new signature.

Round 3 (Merge). By 𝑇 − 3Δ a validator 𝜈 has the set S (1)𝜈 of
Round-1 objects it has received from its peers. The validator sets

MergeDigest𝜈 := BuildMerge(S (1)𝜈 ) .

It then broadcasts signed object 𝑚3
𝜈 = (slot, 3, Payload(3)𝜈 ) with

Payload

Payload(3)𝜈 =

(
MergeDigest𝜈 ,QuorumSigs(1)𝜈

)
and signature 𝜎 (3)𝜈 = sign𝜈 (𝑚

(3)
𝜈 ) during the interval [𝑇 − 3Δ, 𝑇 −

2Δ).

Round 4 (Commit). Leader 𝜈ℓ waits for at least 𝑓 +1 Round-3
signed objects to compute MergeDigest★ := BuildMerge

(
S (3)𝜈ℓ

)
.

The leader then appends the quorum signatures to this final digest
to form the Round-4 payload:

Payload(4)𝜈ℓ =

(
MergeDigest★, QuorumSigs(3)𝜈ℓ

)
.

The leader then broadcasts the corresponding signed object to all
other validators within the window [𝑇 − 2Δ, 𝑇 − Δ), as well as
deriving the correct aggregation of meta-transactions to be cleared
based on the final state thatMergeDigest★ commits to and sends
this to the public mempool and all block builders.

Round 5 (Submit). The Angstrom smart contract accepts trans-
actions sent by any Angstrom validator. This enables all other
Angstrom validators to derive and submit two transactions from the
MergeDigest★ provided in the leader’s signed object, which also
must correspond with their own Round 3 signed object assuming
there were no faults in the consensus procedure during [𝑇 − Δ, 𝑇 ).

The first transaction is the aggregate top-of-block and batch auc-
tion result for all pools based on the set of valid transactions implied
byMergeDigest★. The second transaction is only the top-of-block
auction results for each pool, without the batch auction executed af-
terwards. Both of these transactions are sent by all other Angstrom
validators to revert-protected endpoints of Ethereum block builders
with the aggregate transaction and the transaction containing only
top-of-block swaps sent with a priority fee marginally.

Since the leader submitted the transaction to the public mempool
and all builder endpoints, requiring other validators to only submit
to revert-protecting builders ensures that extra gas costs are not
imposed on the aggregate system due to all validators submitting
the Angstrom transaction for a given slot with all but one reverting
upon block inclusion. The submission of the second transaction
ensures that, in the event of a double-spending batch order—where
a top-of-block bidder aims to exercise a post-consensus option
described in section 4.1.2 by adding a malicious, double-spendable
order from a Sybil address that is cleared in the batch auction—an
Angstrom transaction containing each pool’s top-of-block swap
is still successfully executed. If the canonical transaction executes
successfully without reverting, however, the second transaction is
never included due to revert protection.

Round (𝑟 ) Window inside slot [0,𝑇 ) Purpose

0 Gossip [0, 𝑇 − 5Δ) Raw tx broadcast
1 Local Build [𝑇 − 5Δ, 𝑇 − 4Δ) Compute and gossip LocalDigest
2 ViewRelay [𝑇 − 4Δ, 𝑇 − 3Δ) Re-gossip all R1 payloads
3 Merge [𝑇 − 3Δ, 𝑇 − 2Δ) Compute and gossip MergeDigest
4 Commit [𝑇 − 2Δ, 𝑇 − Δ) Leader chooses canonical view
5 Submit [𝑇 − Δ, 𝑇 ) All validators send tx to mempool

Upon completion of the consensus protocol for a given slot,
the leader must gossip a consensus trace to all other validators
within some pre-defined grace period to ensure no bid-shading via
concealed equivocation occurred in the construction of the Round-4
signed object.5 The formal specification for the consensus trace is
deferred to appendix B.1.

5The grace period can be multiple orders of magnitude larger than Δ or even the slot
time.

4



Angstrom v1 Whitepaper

2.3 Faults
Angstrom’s consensus protocol is accountable: every deviation is
associated with a finite, verifiable proof and an on–chain penalty.
Concretely, the protocol recognizes the following faults:

(1) Equivocation. A validator signs two different payloads for
the same round in a single slot.

(2) Absence.A validator fails to distribute their Round 1 signed
object to all other validators by the deadline𝑇−4Δ. A thresh-
old of 𝑓 +1 LateLocal attestations suffices to prove the ab-
sence or tardiness.

(3) Final View Censorship. The elected leader fails to distrib-
ute their Round 4 signed object to all other validators by
the deadline𝑇−Δ. A threshold of 𝑓 +1 LateFinal attestations
suffices to penalize the withholding.

(4) Trace Censorship/Data Witholding The elected leader
either fails to distribute a consensus trace for their Round-4
signed object to all other validators prior to a protocol-
defined grace period, or distributes a malformed trace. A
threshold of 𝑓 +1 TraceFault attestations after the deadline
suffices to penalize the fault.

Each fault admits a compact, signature-based certificate that
can be assembled by the 𝑓 +1 honest validators guaranteed by our
model, while remaining unforgeable by any coalition of at most 𝑓
Byzantine actors. The precise statement of each fault, the minimal
proof objects, and possible protocol penalties are deferred to Appen-
dix B.2. The formal censorship-resistance and no-free-optionality
arguments for the consensus protocol are similarly deferred to
Appendix B.3.

3 Order Execution
In the following subsections, we describe the sequential dual-auctions
run by Angstrom’s off-chain validators and detail the pool-unlock
mechanism that, upon transaction execution, frees Angstrom liq-
uidity for composable on-chain interactions. Each subsection first
outlines the technical details of the execution mode it describes,
which is then followed by an analysis of the economics for liquidity
providers upon the completion of the execution mode. These anal-
yses show that, in Angstrom, liquidity providers have positive P&L
when the top-of-block auction resolves to common value and there
is any residual order flow in either the batch auction or post-unlock
state.

3.1 Top-of-Block Auction
At the start of every Ethereum block Angstrom runs a first-price
auction for the exclusive right to perform one zero-fee swap in a
pool. The winner specifies a tuple (𝐵, 𝑃𝑓 ), pays a lump-sum bid 𝐵
of asset 𝑌 to the pool contract, and executes a swap that moves
the AMM price from its pre-auction value 𝑃0 to a post-swap target
𝑃𝑓 > 𝑃0.6 We represent concentrated liquidity by the set of tick-
liquidity tuples {(𝑖, 𝐿𝑖 )} and take 𝑝𝑖 to represent the price at tick
𝑖 . From [2] we have the amount of asset 𝑋 that the AMM supplies
between 𝑝start and 𝑝end inside a single tick 𝑝 ∈ [𝑝𝑖 , 𝑝𝑖+1) with

6The 𝑃𝑓 < 𝑃0 case is symmetric.

𝑃0 ≤ 𝑝𝑖 ≤ 𝑝start ≤ 𝑝end ≤ 𝑝𝑖+1 as

Δ𝑋𝑖 = 𝐿𝑖

(
1

√
𝑝start

− 1
√
𝑝end

)
. (3.1)

Wewant to solve for the budget in𝑌 necessary to raise all utilized
liquidity in a given swap up to the same effective execution price.
Differentiating eq. (3.1) with respect to 𝑝end and generalizing over
all 𝑝 > 𝑃0, we get the marginal 𝑋 -per-𝑝 density

ℓ𝑋 (𝑝) =
∑︁
𝑖

𝐿𝑖

2𝑝3/2
1𝑝∈[𝑝𝑖 ,𝑝𝑖+1 ) , 𝑝 > 𝑃0 . (3.2)

Equation (3.2) allows us to define the interval compensation cost
with 𝑃0 ≤ 𝑝start < 𝑝end ≤ 𝑝′ as

𝛿 (𝑝start, 𝑝end, 𝑝′) =
∫ 𝑝end

𝑝start
ℓ𝑋 (𝑞) (𝑝′ − 𝑞) 𝑑𝑞

=
∑︁
𝑖

∫ 𝑏𝑖

𝑎𝑖

𝐿𝑖

2𝑞3/2
(𝑝′ − 𝑞) 𝑑𝑞

=
∑︁
𝑖

𝐿𝑖

𝑝′
(

1
√
𝑎𝑖
− 1
√
𝑏𝑖

)
+ √𝑎𝑖 −

√︁
𝑏𝑖


(3.3)

where 𝑎𝑖 = max{𝑝𝑖 , 𝑝start} and 𝑏𝑖 = min{𝑝𝑖+1, 𝑝end} and the sums
are taken over all ticks{𝑖 | 𝑝start < 𝑝𝑖+1 and 𝑝𝑖 < 𝑝end}, i.e. all
ticks contributing liquidity in the swap range. Note that eq. (3.3)
multiplies the liquidity density (in units of𝑋 -per-price) by the price
compensator (in units of 𝑌/𝑋 ) and integrates across price, resulting
in an aggregate compensation amount in units of 𝑌 .
𝛿 (𝑝start, 𝑝end, 𝑝′) is strictly increasing and precisely measures

the required budget to raise all AMM liquidity in [𝑝start, 𝑝end] up
to the same effective execution price, 𝑝′.

Definition 3.1 (Cumulative Compensation to 𝑝). For 𝑝 > 𝑃0,
define the cumulative compensation to 𝑝 as𝐶 (𝑝) := 𝛿 (𝑃0, 𝑝, 𝑝).𝐶 (𝑝)
is exactly the total payment required to raise all liquidity initially
priced in the interval [𝑃0, 𝑝] to the common execution price 𝑝 , which
is notably also the final pool price.

Bid distribution. Let the winning bidder submit (𝐵, 𝑃𝑓 ) with 𝑃𝑓 >

𝑃0. Define the equalization frontier

𝑝★ := min
{
𝑃𝑓 , inf{𝑝 ≥ 𝑃0 : 𝐶 (𝑝) ≥ 𝐵}

}
,

which is the unique price where the spent budget first catches up
with the cost curve. If 𝑝★ = 𝑃𝑓 , the bid suffices to reach all the way
to 𝑃𝑓 and we have a bid surplus

𝑆 := 𝐵 −𝐶 (𝑃𝑓 ) ≥ 0
that we want to distribute to the ticks that provided active liquidity
in the swap. In this case, a new effective price 𝑝★ > 𝑃𝑓 is determined
that exhausts the whole bid without touching new ticks beyond 𝑃𝑓 ,
while also ensuring that all active ticks trade at the same execution
price 𝑝★. This price is given by

𝑝★ = 𝑃𝑓 +
𝑆

𝐿swap
, 𝐿swap :=

∫ 𝑃𝑓

𝑃0
ℓ𝑋 (𝑞) 𝑑𝑞,

i.e. we shift every utilized tick up by the same price increment
𝑆

𝐿swap
, the surplus normalized by the integral of the liquidity density

over the swap range. For each tick 𝑖 with 𝑝𝑖 < 𝑝★ we bid 𝑏𝑖 =
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𝛿 (max{𝑝𝑖 , 𝑃0}, min{𝑝𝑖+1, 𝑝★}, 𝑝★), distributing exactly the amount
that would have been earned had the tick’s entire liquidity executed
at the common price 𝑝★.

Algorithm 1 Bid distribution
Require: Sorted ticks (𝑝𝑖 , 𝐿𝑖 ) , start 𝑃0, target 𝑃𝑓 , bid 𝐵
1: 𝐶𝑓 ← 𝐶 (𝑃𝑓 ) ⊲ cost to lift all crossed liquidity to 𝑃𝑓
2: if 𝐵 ≤ 𝐶𝑓 then ⊲ exact or under funded bid
3: 𝑝★ ← RootOf

(
𝐶 (𝑝 ) = 𝐵

)
⊲ 𝑃0 ≤ 𝑝★ ≤ 𝑃𝑓

4: for all ticks 𝑖 do
5: 𝑎 ← max{𝑝𝑖 , 𝑃0}, 𝑏 ← min{𝑝𝑖+1, 𝑝★}
6: 𝑏𝑖 ← (𝑝𝑖 < 𝑝★) ? 𝛿 (𝑎,𝑏, 𝑝★) : 0 ⊲ 𝛿 from (3.3)
7: end for
8: else ⊲ over funded bid with surplus
9: 𝑆 ← 𝐵 − 𝐶𝑓 ⊲ residual budget
10: 𝐿swap ← 0
11: for all ticks 𝑖 with 𝑝𝑖 < 𝑃𝑓 do
12: 𝑎 ← max{𝑝𝑖 , 𝑃0}, 𝑏 ← min{𝑝𝑖+1, 𝑃𝑓 }
13: 𝐿swap ← 𝐿swap + 𝐿𝑖

(
1√
𝑎
− 1√

𝑏

)
14: end for
15: 𝑝★ ← 𝑃𝑓 + 𝑆/𝐿swap ⊲ common post-comp. price
16: for all ticks 𝑖 do
17: if 𝑝𝑖 < 𝑃𝑓 then
18: 𝑎 ← max{𝑝𝑖 , 𝑃0}, 𝑏 ← min{𝑝𝑖+1, 𝑃𝑓 }
19: 𝑏𝑖 ← 𝛿 (𝑎,𝑏, 𝑝★)
20: else
21: 𝑏𝑖 ← 0
22: end if
23: end for
24: end if
25: return {𝑏𝑖 }

It immediately follows that:
Proposition 3.1 (Monotoneweighting). The per-unit-liquidity

reimbursement 𝑏𝑖/𝐿𝑖 is non-increasing in the tick distance from 𝑃0.
Hence liquidity closest to 𝑃0 is compensated the most (cf. subfigure 3.4).

Figure 3 provides intuition for how liquidity is compensated per
algorithm 1 for a top-of-block swap with bid 𝐵, start price 𝑃0, and
target price 𝑃𝑓 over the example liquidity distribution detailed in
subfigure 3.1.

3.1.1 Analysis In this section, we will present an informal dis-
cussion of the economics of Angstrom from the perspective of
liquidity providers. Our analysis assumes a perfectly competitive
market of arbitrageurs in the style of Milionis et al. [4]. Here, time
𝑡 , arbitrageurs can trade on an external venue (e.g., Binance) at
the reference price 𝑆𝑡 , while the on-chain spot pool price 𝑃𝑡 may
deviate from this price. We assume that arbitrageurs can trade fric-
tionlessly (e.g., no fees, price impact, etc.) on the external market as
well on Angstrom (e.g., no gas), and that all price discovery happens
on the external market.

To begin, consider the state of the pool after the top-of-block
auction occurs. Note that the top-of-block auction is a first-price
auction in a fully common-value setting. In this setting, we can
establish the following:

Theorem 3.2 (Informal). After the top-of-block auction, the pool
spot price 𝑃𝑡 is equal to the reference price 𝑆𝑡 , and the auction results
in zero P&L for the each tick in the pool.

Proof. A profit-maximizing arbitrageur will trade until there is
zero marginal profit, that is, until the marginal price on the pool is
equal to the external price 𝑃𝑡 . Since there are no fees paid to the
pool in the top-of-block auction, the marginal price on the pool
is given by the spot price 𝑆𝑡 , hence, after the arbitrageur’s trade,
we will have 𝑆𝑡 = 𝑃𝑡 . In a competitive, zero-profit equilibrium
among arbitrageurs, the full profit of this trade will be bid in the
top-of-block auction. As that bid is distributed to ticks according
to the procedure described in Algorithm 1, the average trade price
received by each tick is exactly 𝑃𝑡 . □

Note that Theorem 3.2 relies on three critical assumptions: (1)
the auction is perfectly competitive; (2) arbitrage trading is friction-
less; and (3) bidders are unable to exploit a post-consensus option.
If any of these assumptions are violated, the pool price may fail
to converge to the external reference. For highly liquid assets, as-
sumption (1) typically holds. The primary friction in (2)—on-chain
gas cost—is amortized over the full depth of liquidity in the swap
range and is thus negligible relative to the common value arising
from expected intra-block reference price deviations. Assumption
(3) is addressed in detail in section 4.1, which also outlines protocol-
level mitigations that eliminate the viability of aiming to exercise
post-consensus options.

3.2 Uniform-Clearing Batch Auction
Angstrom conducts its uniform-clearing batch auction upon the
resultant AMM state after the top-of-block swap to protect against
sandwich attacks and to ensure slippage is minimized via market
makers providing just-in-time limit-order liquidity up to a fee-
bound away from the external reference price.

In their seminal work, Budish et al. [8] argue that high-frequency
batch auctions in traditional limit order books lead to increased
liquidity by reducing costs for market makers. Canidio and Fritsch
[9] apply batch auctions to blockchains with a design that is able
to clear all orders over a given asset pair in a block, alongside a
constant product AMM, at a uniform clearing price.

Angstrom’s batch auction builds upon this to determine the
uniform clearing price across a diverse set of order types while also
integrating the underlying concentrated liquidity AMM dynamics in
the batch clearing. This section specifies the structure of order types,
their contribution to the aggregate supply curve, the algorithm used
to find the clearing price, and considers potential difficulties arising
from incompatible or ambiguous order matching at that price.

Order Types and Liquidity Representation Every batch is reduced
to a single net supply curve, 𝑇𝑋 (𝑝′). For any hypothetical clearing
price 𝑝′ — quoted in the canonical units of 𝑌/𝑋 , i.e. numeraire 𝑌
(token0) per unit of risky asset 𝑋 (token1) — the value 𝑇𝑋 (𝑝′)
records the net amount of 𝑋 that market participants are prepared
to supply to (𝑇𝑋 > 0) or demand from (𝑇𝑋 < 0) the batch.

Two sources contribute to the net supply curve:

(1) the AMM’s concentrated-liquidity ticks, whose reserves’ Δ𝑋 is
a deterministic function of 𝑃0 and 𝑝′; and

(2) five off-chain order archetypes (exact-in ask, exact-out ask,
exact-in bid, exact-out bid, and partially-fillable limits).
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Figure 3. Five-panel intuition for bid redistribution. (I) Example liquidity distribution between 𝑃0 and 𝑃𝑓 . (II) Corresponding cumulative liquidity curve. (III)
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is highest near 𝑃0 and declines to zero at 𝑝★. (V) Effective execution price profile for a sample liquidity position from 𝑃0 to 𝑃𝑓 . Compensated liquidity in the

range is executed at 𝑝★, then the effective execution price rises as
√︁
𝑝 𝑃𝑓 for the prices greater than 𝑝★.

Each order is described by its side (+1 for asks that supply 𝑋 ,
−1 for bids that demand 𝑋 ), its execution mode (exact-in, exact-
out, or partial), a minimum fill amount 𝑘 , an optional elastic tail
𝑒 (for partial orders), and a fee-adjusted limit price 𝑝 lim in 𝑌/𝑋 . A
breakdown of how each order archetype, including the underlying
pool liquidity, corresponds to the net supply curve is showcased in
table 1.

Because the flow variable is now the risky asset 𝑋 ,
• an ask becomes active when it can sell at or above its limit(

𝑝′ ≥ 𝑝 lim
)
;

• a bid becomes active when it can buy at or below its limit
(
𝑝′ ≤

𝑝 lim
)
.

Under these sign–activation conventions the aggregate 𝑇𝑋 (𝑝′) is
monotone non-decreasing in price, so it crosses the horizontal axis at
most once, exactly as illustrated in subfigure 4.3. This preserves the
uniqueness and guaranteed convergence of the bisection routine
that locates the uniform clearing price.

The global supply curve is the sum over all active rows; bids
enter with negative sign. For partial orders, the kernel, 𝑘 , is treated
as indivisible in the rigid amount, while any remainder up to 𝑒 is
elastically fillable and resolved pro-rata on all cleared partial orders
once a uniform price 𝑝𝑒 is fixed7. All fees are deducted in 𝑌 at the
pool rate 𝛾 , hence limit prices are understood to be fee-adjusted as
described in the following paragraph.

7The algorithm to deterministically find the clearing allocation at 𝑝𝑒 is detailed in
appendix A.2

Fees All trading fees are charged in the numeraire asset 𝑌 at the
pool-specific rate 𝛾 ∈ (0, 1) and are deducted before the uniform-
clearing algorithm is run. A protocol split parameter 𝜙𝑝 ∈ [0, 0.5)
and a validator split parameter 𝜙𝑣 ∈ [0, 0.5) determines how the
batch’s aggregate fee is shared between the protocol, the validators,
and the underlying LPs.
• Exact–in ask (sell 𝑋 for 𝑌 ): the trader receives 𝑝 𝑥in units of
𝑌 at price 𝑝; the contract withholds 𝛾 of that amount, so only
(1 − 𝛾) 𝑝 𝑥in enters the net-supply curve.

• Exact–out bid (buy 𝑋 with 𝑌 ): the trader transfers 𝑦in units of
𝑌 ; the pool retains 𝛾 𝑦in as the fee, and the remaining (1 − 𝛾) 𝑦in
is available for matching.
To keep every order’s economic guarantee intact, the engine

rewrites each user-supplied limit price 𝑝 lim as a fee-adjusted limit

𝑝 =


𝑝 lim

1 − 𝛾 , exact–in ask,

𝑝 lim (1 − 𝛾), exact–out bid,

and the bisection routine operates on the multiset {𝑝}. This guar-
antees that the uniform clearing price 𝑝𝑒 remains acceptable once
post-settlement fee transfers are applied.

Example. Take 𝛾 = 30 bps = 0.003 and an exact-in ask in which
a trader sells 𝑥in = 50𝑋 at a minimum price 𝑝 lim = 25 𝑌/𝑋 . The
limit is internally lifted to

𝑝 =
𝑝 lim

1 − 𝛾 =
25

0.997 ≈ 25.075 𝑌/𝑋 .
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Archetype Intent Activation domain for 𝑝′ Net 𝑋 contribution 𝑇𝑋 (𝑝′)

AMM tick (𝑖, 𝐿𝑖 ) liquidity on [𝑝𝑖 , 𝑝𝑖+1) ∃ 𝑝 ∈ [𝑝𝑖 , 𝑝𝑖+1) s.t.


𝑝′ < 𝑝 < 𝑃0, 𝑝′ < 𝑃0

𝑃0 < 𝑝 < 𝑝′, 𝑝′ > 𝑃0
𝐿𝑖


(

1√
min{𝑝𝑖+1,𝑃0 }

− 1√
max{𝑝𝑖 ,𝑝′ }

)
, 𝑝′ < 𝑃0,(

1√
max{𝑝𝑖 ,𝑃0 }

− 1√
min{𝑝𝑖+1,𝑝′ }

)
, 𝑝′ > 𝑃0

Exact-in ask sell fixed 𝑥in 𝑝′ ≥ 𝑝 +𝑥in
Exact-out ask receive fixed 𝑦out 𝑝′ ≥ 𝑝 + 𝑦out

(1 − 𝛾) 𝑝′

Exact-in bid spend fixed 𝑦in 𝑝′ ≤ 𝑝 − (1 − 𝛾) 𝑦in
𝑝′

Exact-out bid acquire fixed 𝑥out 𝑝′ ≤ 𝑝 −𝑥out
Partial (min 𝑘 , max 𝑘 + 𝑒) flexible fill, side∈ {+1,−1} side (𝑝′ − 𝑝) ≥ 0 side

(
𝑘 + 𝜂 (𝑝′)

)
, 𝜂 ∈ [0, 𝑒]

Table 1. Order archetypes and their contribution to the net-supply curve𝑇𝑋 (𝑝′ ) . For price above 𝑃0, the AMM supplies 𝑋 (the piecewise term is positive); for
prices below 𝑃0, it demands 𝑋 (the piecewise term is negative).

The order enters the batch only if 𝑝𝑒 ≥ 25.075. If the auction clears
at 𝑝𝑒 = 25.10, the pool owes the trader 𝑝𝑒𝑥in = 1,255𝑌 ; the fee
is 0.003 × 1,255 ≈ 3.765𝑌 , so the trader receives (1 − 𝛾)𝑝𝑒𝑥in ≈
1,251.24𝑌 , just above the required 1,250𝑌 . The 3.765𝑌 fee is split,
with (1−𝜙𝑝 −𝜙𝑣) ·3.765𝑌 distributed pro-rata to the LPs providing
active liquidity in the swap range, 𝜙𝑝 · 3.765𝑌 retained by the
protocol, and 𝜙𝑣 · 3.765𝑌 collected for distribution to validators.

3.2.1 Uniform Clearing Price Algorithm The uniform clearing price
𝑝𝑒 is the (unique) price at which the aggregate net–supply curve
for the risky asset, 𝑇𝑋 (𝑝), crosses zero, i.e. total 𝑋 offered equals
total 𝑋 demanded. Because 𝑇𝑋 ( · ) is monotone non-decreasing in
price (negative at low 𝑝 where bids dominate, positive at high 𝑝
where asks dominate), a simple bisection routine suffices:

Algorithm 2 Uniform Clearing Price via Net-Supply Bisection
Require: Net–supply curve 𝑇𝑋 (𝑝) (𝑇𝑋 > 0: excess 𝑋 supply, 𝑇𝑋 < 0:

excess demand)
1: Initialize 𝑝min ← 𝑝𝑠 , 𝑝max ← 𝑝upper ⊲ feasible price bounds
2: Choose tolerance 𝜖 ∈ (0, lot size)
3: while 𝑝max − 𝑝min > 𝜖 do
4: 𝑝mid ←

𝑝min + 𝑝max
2

5: 𝑒 ← 𝑇𝑋 (𝑝mid) ⊲ net excess at mid-price
6: if 𝑒 > 0 then ⊲ excess supply — root lies lower
7: 𝑝max ← 𝑝mid
8: else if 𝑒 < 0 then ⊲ excess demand — root lies higher
9: 𝑝min ← 𝑝mid
10: else
11: break ⊲ exact balance found
12: end if
13: end while
14: return (𝑝min + 𝑝max)/2

Convergence and complexity. Since 𝑇𝑋 is monotone and continu-
ous in the feasible interval

[
𝑝𝑠 , 𝑝upper

]
and satisfies 𝑇𝑋 (𝑝𝑠 ) ≤ 0 ≤

𝑇𝑋 (𝑝upper), the sign changes at most once, guaranteeing a single
root. Each loop halves the bracket length, so after ⌈log2

(
(𝑝upper −

𝑝𝑠 )/𝜖
)
⌉ iterations the width falls below 𝜖 .

Evaluating𝑇𝑋 (𝑝) requires one pass over the 𝑛 active AMM ticks
and N off-chain orders, giving 𝑂 (𝑛 + N) time per iteration. Hence

the total work is

𝑂

(
(𝑛 + N) log

(
(𝑝upper − 𝑝𝑠 )/𝜖

) )
,

with constant auxiliary memory beyond the input data.

Feasible and Failed Auctions The bisection routine always yields
a candidate uniform price 𝑝𝑒 at which fee-adjusted supply equals
demand; nonetheless, the subsequent allocation can still fail when
the book contains indivisible (“rigid”) orders whose quantities do
not line up.

Infeasible example. Assume no pool liquidity and a limit book
containing

• an exact-out ask that wishes to receive 1,200𝑌 with 𝑝 = 1.00
(hence it must deliver 1,200𝑋 ) and
• an exact-in bid willing to buy 1,000𝑌 worth of 𝑋 with 𝑝 = 1.00.

At 𝑝 = 1.00 the intersection point is 1,000𝑌 , so 𝑝𝑒 = 1.00; yet the
ask’s rigid requirement of 1,200𝑋 overshoots available demand,
leaving no feasible matching, thus the auction fails and neither
order is cleared.

Feasible but ambiguous example. Now consider four asks
{4, 4, 2, 10} and four bids {5, 3, 2, 1}, all quoted at the same limit
price of 1 𝑌/𝑋 . Two distinct allocations clear the same maximal
volume 10 units of both assets: either (i) match the single 10-lot ask
with bids (5, 3, 2), or (ii) match asks (4, 4, 2) with the same three
bids. The execution algorithm must choose one of these equally
valid matchings in a deterministic fashion.

Problem relaxation. Since every partially-fillable order de-
clares a rigid kernel and an elastic tail, the search for a maximal
allocation becomes a variant of the balanced subset-sum problem.
The kernels on each side form two multisets; equality between
the two subset sums may be offset by a slack no larger than the
aggregate tails unlocked by those very same subsets. Appendix A.2
formalizes this relaxation and presents an efficient algorithm that
always selects a volume-maximizing allocation. Notably, the algo-
rithm ensures that orders with the largest elastic tail have queue
priority at the post-bisection uniform clearing price. This tail-size
incentivization has the positive second-order effect of minimizing
failed auctions that result from quantity misalignment of indivisible
orders.
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Figure 4. We visualize how the AMM curve, off-chain order book, and resulting aggregate net-supply determine the uniform clearing price and matched
quantity. Subfigure 4.4 shows how execution resolves at 𝑝𝑒 when there is misalignment in supplied/demanded quantities, based on the specifications provided

in appendix A.2.

3.2.2 Analysis In this section, we continue the analysis under the
assumptions of Section 3.1.1. After the uniform-clearing batch auc-
tion, we can establish the following:

Theorem 3.3 (Informal). The uniform-clearing batch auction
results in a clearing price 𝑝𝑒 that satisfies

𝑆𝑡 (1 − 𝛾) ≤ 𝑝𝑒 ≤ 𝑆𝑡/(1 − 𝛾) .

Proof. Under our assumptions, an informed arbitrageur will be
willing to buy at an all-inclusive price less then or equal to 𝑆𝑡 or
sell at an all-inclusive price greater than or equal to 𝑆𝑡 . Given the
fees charged by the auction, this translates to a fee-adjusted bid

price of 𝑆𝑡 (1 − 𝛾) and a fee-adjusted ask price of 𝑆𝑡/(1 − 𝛾). Then,
the pool will clear at the price 𝑝𝑒 that satisfies 𝑆𝑡 (1 − 𝛾) ≤ 𝑝𝑒 ≤
𝑆𝑡/(1 − 𝛾). □

3.3 Pool Unlock
A substantial share of on-chain swap volume involves multi-step,
composable workflows, such as lending-protocol liquidations or
multi-hop swap routes, that must pull in intermediate liquidity and
use it atomically. Embedding trades with external-state dependen-
cies directly into an Angstrom transaction would couple their revert
semantics to the entire batch, jeopardizing aggregate settlement.

9
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Furthermore, many of these actors require self-execution: their
validation pipeline expects a fully formed user-signed transaction
(for example, specialized routers with custom validation contracts),
rather than an EIP-712 intent executed within the Angstrom batch.
This model conflicts with Angstrom’s intent-batch architecture, in
which users’ trades are submitted as intents and executed together
in a single on-chain transaction.

To support both composability and self-execution, Angstrom
flips a single poolUnlocked flag at the end of its canonical trans-
action. This unlocks the pool, enabling its on-chain liquidity to be
available for composable interactions in the remainder of the block,
but only after both auctions have been settled. In this unlocked
state, the pool behaves like any other Uniswap v4 pool and can be
accessed directly.

Because the flag is set inside the canonical Angstrom transac-
tion, any follow-on swap must be placed after it. A higher-priority
placement would simply revert against the still-locked pool, so a
rational block builder will naturally sequence external calls after
the Angstrom batch.

Once unlocked, the pool remains tradable for the rest of the
block at an elevated fee, 𝛾post > 𝛾 .

3.3.1 Analysis In this section, we continue the analysis under the
assumptions of Section 3.1.1. After the unlock, we can establish the
following:

Theorem 3.4 (Informal). After the unlock, swaps executed against
the pool are, in aggregate, strictly profitable to the liquidity providers
when valued at the contemporaneous reference price.

Proof. Suppose there is more than one swap in the post-unlock
period. We can construct an aggregate swap by netting input tokens
(after fees have been collected) across all of the swaps. Such an
aggregate swap will result in the same number of total output
tokens from the perspective of each LP, since, after fees, trading
on the pool is path independent. However, fewer fees will be paid
by the aggregate trade if there is any netting. Hence, without loss
of generality, we can restrict to the case of a single swap in the
post-unlock period.

After the pool unlock, the fee-inclusive bid and ask are given by

𝑝bid = 𝑝𝑒 (1 − 𝛾post), 𝑝ask =
𝑝𝑒

1 − 𝛾post
.

Recall that 𝑆𝑡 denotes the contemporaneous reference price. From
Theorem 3.3, we have that

𝑆𝑡 (1 − 𝛾) ≤ 𝑝𝑒 ≤ 𝑆𝑡/(1 − 𝛾).
Then, since 𝛾post > 𝛾 , we have

𝑝min
bid ≜ 𝑆𝑡 (1 − 𝛾) (1 − 𝛾post) < 𝑝bid < 𝑝max

bid ≜ 𝑆𝑡
1 − 𝛾post
1 − 𝛾 ,

𝑝min
ask ≜ 𝑆𝑡

1 − 𝛾
1 − 𝛾post

< 𝑝ask < 𝑝max
ask ≜

𝑆𝑡

(1 − 𝛾post) (1 − 𝛾)
.

Then, it is clear that
𝑝bid < 𝑆𝑡 < 𝑝ask,

cf. Figure 5. Since 𝑝bid is the highest (fee-inclusive) price that any
LP will buy at, and 𝑝ask is the lowest (fee-inclusive) price that any
LP will sell at, any aggregate trade must be profitable for all LPs. □

4 Discussion
4.1 Post-Consensus Last Mover and Optionality
We consider a single asset pair (𝑥,𝑦) with risky asset 𝑥 and nu-
meraire 𝑦. The external reference price process is a drift–free geo-
metric Brownian motion

𝑑𝑆𝑡

𝑆𝑡
= 𝜎 𝑑𝑊𝑡 , 𝑆0 > 0, 𝜎 > 0, (4.1)

where𝑊𝑡 is a standard Brownian motion. The on–chain pool is a
full-range constant-product AMM with reserves (𝑥0, 𝑦0), liquidity
invariant 𝐿 := √𝑥0𝑦0, and initial pool price8 𝑃0 := 𝑦0/𝑥0.

Swap profit for a deterministic price move. If the pool price is
displaced from 𝑃0 to 𝑃 while the oracle reads 𝑆 , from eq. (3.3) we
have the trader’s cash profit (in units of 𝑦) as

Πswap (𝑃, 𝑆) = 𝐿
[
𝑆

(
1√
𝑃0
− 1√

𝑃

)
−

(√
𝑃 −

√︁
𝑃0

)]
. (4.2)

4.1.1 Timing game.

(i) At time 𝑇 the top-of-block auction allocates the exclusive right
to be the first swapper through the given pool in the current
slot. To win, an attacker must bid the intrinsic value of bringing
the pool to the reference price9, i.e. 𝐵∗ = Πswap (𝑆𝑇 , 𝑆𝑇 ).

(ii) She chooses a final pool price 𝑃𝑓 , executes the swap, and pays
no pool fee.

(iii) During (𝑇,𝑇 + 𝜏] she may censor or revert the entire bundle at
a flat on–chain fee 𝑐 > 0.

Random cash flow at the censorship deadline. Conditioned on 𝑆𝑇 ,
the incremental P&L against the pool is

ΔΠ𝑇+𝜏 = Πswap (𝑃𝑓 , 𝑆𝑇+𝜏 ) − 𝐵∗ = 𝛼 (𝑃𝑓 )𝑆𝑇+𝜏 + 𝛽 (𝑃𝑓 )

with

𝛼 (𝑃𝑓 ) = 𝐿
(

1√
𝑃0
− 1√

𝑃𝑓

)
, 𝛽 (𝑃𝑓 ) = 𝐿

(
2
√︁
𝑆𝑇 −

√︃
𝑃𝑓 − 𝑆𝑇√

𝑃0

)
. (4.3)

Thus the attacker’s net payoff is

Π(𝑃𝑓 , 𝑐) = E
[
max

{
𝛼𝑆𝑇+𝜏 + 𝛽, −𝑐

} ��� 𝑆𝑇 ]
. (4.4)

Option equivalence. Henceforth, we consider the case where
the attacker chooses 𝑃𝑓 > 𝑃0, equivalent to them going long a

call10. Write 𝐾 (𝑃𝑓 , 𝑐) := −
𝛽 (𝑃𝑓 ) + 𝑐
|𝛼 (𝑃𝑓 ) |

and let 𝐶 (𝑆, 𝐾) denote the

Black–Scholes price of the call of maturity 𝜏 and strike 𝐾 . Then

Π(𝑃𝑓 , 𝑐) = 𝛼 (𝑃𝑓 ) 𝐶
(
𝑆𝑇 , 𝐾 (𝑃𝑓 , 𝑐)

)
− 𝑐. (4.5)

Because 𝐾 (·, 𝑐) is affine in 𝑃−1/2
𝑓

and 𝐶 (𝑆, ·) is convex in 𝐾 , the
map 𝑃𝑓 ↦→ Π(𝑃𝑓 , 𝑐) is strictly concave and is maximized by a
unique 𝑃𝑓 .

8A concentrated-liquidity generalization is algebraically identical but obscures the
exposition.
9A competing bidder can bid this value and instantly hedge on the reference market
at time𝑇 , ensuring that 𝐵∗ is the floor bid of the auction
10The put case can be formulated symmetrically.
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Price
𝑝min
bid

𝑆𝑡 (1 − 𝛾 ) (1 − 𝛾post )

𝑝𝑒,min

𝑆𝑡 (1 − 𝛾 )

𝑝max
bid

𝑆𝑡
1 − 𝛾post
1 − 𝛾

𝑆𝑡 𝑝min
ask

𝑆𝑡
1 − 𝛾

1 − 𝛾post

𝑝𝑒,max

𝑆𝑡

1 − 𝛾

𝑝max
ask

𝑆𝑡

(1 − 𝛾 ) (1 − 𝛾post )

post-unlock bid side range post-unlock ask side range

no-arbitrage window

Figure 5. Post-unlock price landscape. Because the post-unlock fee satisfies 𝛾post > 𝛾 , the fee-inclusive bid–ask widens so that the best attainable bid 𝑝max
bid

remains below the reference price 𝑆𝑡 and the best attainable ask 𝑝min
ask remains above it; the upper brace highlights the resulting no-arbitrage window. Any

taker swap is therefore prevented from preferentially taking the AMM liquidity marked to the instantaneous reference price.

First-order Condition Let 𝐶𝐾 := −𝜕𝐾𝐶 (𝑆, 𝐾). For 𝑃𝑓 > 𝑃0 we
have 𝛼 (𝑃𝑓 ) > 0, so differentiating (4.5) yields
𝜕Π

𝜕𝑃𝑓
= 𝛼 ′ (𝑃𝑓 )𝐶

(
𝑆𝑇 , 𝐾 (𝑃𝑓 , 𝑐)

)
− 𝛼 (𝑃𝑓 )𝐶𝐾

(
𝑆𝑇 , 𝐾 (𝑃𝑓 , 𝑐)

)
𝐾 ′ (𝑃𝑓 , 𝑐) .

(4.6)
which simplifies to the implicit first-order condition
𝛼 ′ (𝑃★

𝑓
)𝐶

(
𝑆𝑇 , 𝐾 (𝑃★𝑓 , 𝑐)

)
= 𝛼 (𝑃★

𝑓
)𝐶𝐾

(
𝑆𝑇 , 𝐾 (𝑃★𝑓 , 𝑐)

)
𝐾 ′ (𝑃★

𝑓
, 𝑐)
(4.7)

which has a unique solution 𝑃★
𝑓
= 𝑃★

𝑓
(𝑆𝑇 , 𝜏, 𝜎, 𝑐) because the left–hand

side is strictly decreasing and the right–hand side is strictly increas-
ing in 𝑃𝑓 .

4.1.2 Option Deterrence and Sybil Prevention The subfigures in
Figure 6 show that, even for large amounts of underlying pool
liquidity, only a small rollback cost is needed to deter bidders from
exploiting the option; a desirable second order effect is that the
rollback probability also trends to zero as this cost is borne. This
cost can be modulated by the protocol to ensure specific thresholds
for rollback percentage and option value are never exceeded.

Implementation-wise, since double spend is verifiable in the sub-
sequent block, the contract only needs to hold the option-deterrent
cost for each valid bidder in the core contract11 for minimum-
viable Angstrom-specific stake. Angstrom validators ensure that
all incoming top-of-block orders originate from addresses with a
stake amount exceeding the threshold. Should a bidder maliciously
double spend the balance their order depended on to invalidate a
bundle, the escrow amount is seized in the subsequent block and
future bids are invalidated until they top up their internal stake
balance. Bidders see immense capital efficiency gains from only
escrowing the option-deterrent cost instead of needing to add their
own internal balances to cover any valid top-of-block order.

The attentive reader will notice that a motivated attacker can
avoid detection of their double spend attack by submitting a tiny or-
der from a separate address that gets filled alongside the top-of-block
trade. Should the post-consensus reference price 𝑆𝑇+𝜏 result in an
unprofitable top-of-block swap, the attacker can front-run the batch
transaction on-chain to spend the token balance that their batch
order depended on to revert the batch. Since this is not attributable
to the top-of-block bidder’s address, the attacker would be able to
escape the double spend verification conducted by Angstrom nodes
upon the block’s finalization, preventing their Angstrom stake from
11The stake can be held as internal balances in a validator-controlled address, where
each validator stores an in-memory map of bidder addresses and their constituent
stake quantities

being seized and resulting in an implied rollback cost that is far
lower than the stake-modulated rollback cost, yielding a profitable
option and resulting in the reversion of a significant percentage
of Angstrom transactions. To protect against this, the Angstrom
validator network sends a second transaction of only the top-of-
block results for each pool to revert-protected builder endpoints as
specified in the Round-5 description of section 2.2. This prevents
the Sybil attack in its entirety. If a Sybil address attempts to grief
the bundle the canonical Angstrom transaction, the top-of-block
transaction will still execute. Any dobule spend that could block
only the top-of-block transaction must come from a staked bidder
equivocating, which will trigger slashing of their Angstrom stake.

5 Smart Contract Design
This section describes Angstrom’s on-chain architecture, imple-
mented entirely within a single Uniswap V4 hook contract. We pro-
ceed by detailing the pool-lock mechanism and bundle-execution
flow in section 5.1. We then explain the transient accounting prim-
itives in section 5.2, followed by the per-tick fee allocation and
donation mechanics in section 5.3, and conclude with gas bench-
marks demonstrating efficiency in section 5.4.

5.1 Pool Lock and Bundle Execution
Angstrom pools are deployed via the Uniswap v4 PoolManager,
with each pool registering the settlement hook upon creation.

At the start of each block, the hook’s beforeSwap callback locks
the pool until a staked validator invokes the execute(bytes bundle).
This lock guarantees that no on-chain swap can bypass the auctions
until both the top-of-block and batch auctions have been settled,
after which the pool unlocks and becomes openly accessible as a
standard Uniswap v4 pool (cf. section 3.3).

Bundle Execution Angstromnodes run the top-of-block and batch
auctions off-chain, derive the final uniform clearing price, and
compute the execution payload: each pool’s net AMM swap and
multi-tick donations to distribute arbitrage proceeds and batch
trading fees.

This representation is possible because successive AMM swaps
can be compressed down to their net result; instead of executing two
swaps sequentially, we can deterministically compute the aggregate
swap off-chain and only execute one swap per pool instead of one
swap per auction or one swap per order; the result is dramatic gas
savings through amortization (cf. section 5.4).
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Figure 6. Option economics under manipulation. (a) Option value, (b) attacker’s optimal pool displacement, 𝑃𝑓 − 𝑆𝑇 , in basis points of 𝑆𝑇 , and (c) probability
of Angstrom transaction rollback all converge to 0 with rollback fee. Common parameters: 𝑃0 = 2500, 𝑆𝑇 = 2501, 𝐿 = 3×106, annualized volatility 𝜎 = 150%.

These precomputed instructions are serialized using the Packed
ABI Decodable Encoding (PADE) scheme (see appendix A) to mini-
mize calldata size and decoding cost. Leveraging the precomputed
execution payload, the on-chain execution can be confined to in-
variant verification—ensuring that for every token, total inflows
match outflows—and state updates: applying the aggregated AMM
swap, executing ERC-20 transfers for order settlement and donation
crediting (cf. table 2).

Order Hooks Each batch order may include an optional compos-
able hook, enabling arbitrary on-chain code to execute atomically
alongside the swap. During execution, Angstrom first loans the
swap output, crediting the recipient via either internal balances or
a direct ERC-20 transfer—so that the hook contract immediately
controls those tokens. It then invokes the hook, supplying the order
sender’s address and data. The hook must return the predefined
4-byte magic constant EXPECTED_HOOK_RETURN_MAGIC, or the en-
tire transaction reverts. Finally, Angstrom debits the swap input
from the sender—either by decrementing internal balances or call-
ing transferFrom. This ordering implements a flash-swap pattern
for the hook, supporting fully composable callbacks within the
atomic settlement. To mitigate abuse and reduce bundle reverts,
only a vetted subset of hooks is permitted by off-chain validators.
Any whitelisted composable interactions that can execute atomi-
cally without risking aggregate reversion (i.e. token wrapping) can
be added as a future protocol upgrade to the off-chain validation
network without needing to upgrade the contracts themselves.

Internal Balances Users can leverage internal balances to save
gas by depositing tokens directly into the hook contract. Internally,
the contract tracks these with a simple mapping:

mapping(address asset ⇒ mapping(address owner ⇒ uint256

balance)) internal _balances;

When an order is settled with use_internal = true, the con-
tract updates their internal balance instead of doing two ERC-20
transfers which saves substantial gas, especially when executing
many orders.

5.2 Consolidated settlement accounting.
During execution the contractmaintains an in-memory DeltaTracker
map that records, for every ERC-20 token, the running difference

Criteria Invariant Checked

User limit prices Executed price ≥ limit price for sells
and ≤ limit price for buys.

DeltaTracker solvency Δ𝛼 = 0 for every ERC-20 after all
bundle actions.

Maximum extra fee bound Gas fee charged per order ≤ user-
signed maxExtraFee; system-wide
fee ≤ ∑

maxExtraFee.
Valid signature Valid EIP-712 or EIP-1271 sig & un-

used nonce / order hash
Standing-order time validity Block time ≤ deadline

Authorized sender msg.sender is in the registry of au-
thorized Angstrom nodes.

Table 2. Key criteria enforced by the core contract during execute.

between tokens taken in (positive) and sent out (negative). All book-
keeping occurs via transient storage (EIP-1153) which avoids costly
SSTORE operations. At the end of the transaction the contract
asserts the solvency invariant∑︁

inflows Δ
in
𝛼 −

∑︁
outflows Δ

out
𝛼 = 0

for every token 𝛼 . When the invariant holds, the pool’s state tran-
sition is identical to one where only the aggregate swap occurred,
and all user balances (external or internal) have been credited.

5.3 Angstrom Fee Distribution Implementation
Angstrom settles one aggregate swap per block: the node nets
the top-of-block order against the entire batch and sends only the
resulting delta to the pool. Crucially, the ticks that receive the top-
of-block donation are not necessarily the same ticks whose liquidity
is consumed by the netted swap. To accurately reward LPs that
supplied liquidity during the top-of-block auction, the contract
must credit arbitrary initialized ticks—even when the aggregate
per-pool swap path never touched them.

Uniswap’s fee–growth primitive. Uniswap v4 tracks fees per unit
liquidity with two accumulators for each fee token 𝛼 :
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• a pool-wide feeGrowthGlobal𝛼 ;
• a per-tick feeGrowthOutside𝛼 that stores the cumulative

growth below the tick (if the tick is less than or equal to
the current tick) or above the tick (if the tick is greater than
the current tick).

By computing the cumulative fee growth within each tick range,
we can determine how much liquidity has appreciated over that
interval. Moreover, by storing two feeGrowthInside values per
position, one for each token, we can accurately attribute each posi-
tion’s proportional share of accrued pool fees at any point in the
future.

Mirroring the pattern for Angstrom rewards. Angstrom re-implements
this pattern for its reward token (always token0). It tracks two ad-
ditional global variables:

• globalGrowth — pool-level accumulator shared by all po-
sitions,

• rewardGrowthOutside[𝑖] — a sparse array keyed by ini-
tialized tick boundaries,

and one per-position variable, lastGrowthInside. During the bun-
dle execution the node supplies a list of (tick, amount) pairs. The
contract walks the bitmap from the current tick toward the side
of the donation incrementally, until it reaches the active tick, then
bumps globalGrowth by the grand total.

Whenever an LP adds or removes liquidity, the beforeAddLiquidity
/ beforeRemoveLiquidity hooks call back into the Angstrom core.
The hook recomputes

growthInside = globalGrowth − rewardGrowthOutside[𝑖ℓ ]
− rewardGrowthOutside[𝑖𝑢 ],

pays out (growthInside− lastGrowthInside) × liquidity, and
updates lastGrowthInside to its current value.

Preventing just-in-time (JIT) abuse. A naive design would allow
an attacker to monitor the Angstrom auctions for instances where
the batch auction nets out in the direction opposing the top-of-
block swap. The validated transaction will then reward ticks that
the top-of-block swap reached, however the aggregation of both
auctions into one swap through the AMM will result in pool state
transition that does not take active pool liquidity up to the implied
final price of the top-of-block swap. The attacker can then inject
liquidity only to the rewarded ticks between the clearing price of
the aggregate auctions and the implied final price for the top-of-
block auction before the Angstrom transaction executes, thereby
receiving a share of the top-of-block rewards without providing
active liquidity for the trade. To close this attack the bundle encodes
the following checksum over the tick range starting with current
tick 𝑖𝑐 :12

checksum = keccak256
(
(𝑖𝑐 , 𝐿𝑐 ), (𝑖𝑐+1, 𝐿𝑐+1), . . .

)
,

the exact sequence of (tick,liquidity) pairs the validators observe
while walking the tick bitmap on the AMM state observed after
the last block. During execution, the contract recomputes the hash
with live pool data; any JIT liquidity would change at least one
12This assumes the top-of-block swap is executing such that 𝑃𝑓 > 𝑃0 . The 𝑃𝑓 < 𝑃0
case is symmetric.

Order Count EFI (w/ AMM) EFI (No AMM) ESLn (w/ AMM) ESLn (No AMM)

1 148.9k 70.4k 159.0k 80.7k
2 84.2k 44.9k 95.7k 56.5k
3 62.6k 36.4k 74.6k 48.4k
4 51.8k 32.2k 64.0k 44.4k
5 45.3k 29.6k 57.7k 42.0k
10 32.4k 24.5k 45.0k 37.2k
20 25.9k 22.0k 38.7k 34.8k
50 22.0k 20.4k 34.9k 33.3k

Table 3. Amortized per-order gas cost for batch settlements of size 𝑁 ,
comparing Exact Flash Orders (EFI) using internal balances and Exact
Standing Orders (ESL) using liquid tokens both with and without AMM

swaps.

Operation Gas Cost

Uni v4 direct pool swap (test router, no checks) 123,144
Uni v4 router ExactInputSingle 134,001

Table 4. Uniswap v4 swap gas cost.

pair’s liquidity field and causes the transaction to revert. Thus, only
liquidity that existed in the previous block can earn top-of-block
donations, preventing front-running JIT liquidity provision attacks.

5.4 Gas Benchmarking
Table 3 reports the amortized gas cost per order for two settlement
modes—Exact Flash Orders (EFI, settling via internal balances) and
Exact Standing Orders (ESLn, settling via on-chain token trans-
fers)—across various batch sizes in a single-pool settlement scenario.
Results are shown both with and without AMM swaps.

Users only incur the AMM swap gas when the batch triggers a
swap against the pool and no arbitrageur executes a top-of-block
trade; in all other cases the arbitrageur absorbs the AMM swap
cost. Additionally these measurements assume one pool per batch.
Spreading orders across multiple pools further dilutes both swap
and encoding overhead, yielding additional per-order savings.

For reference, a bare Uniswap v4 pool swap (no router checks)
consumes about 123k gas, while the standard router call costs ap-
proximately 134k gas (cf. table 4).
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A System Architecture
The off-chain Angstrom node network conducts the sequential
auctions, validates the finalized bundle, and handles Ethereum syn-
chronization in a single event-driven system. The protocol uses
a stake-weighted round robin algorithm (see, e.g., [10]) to select
the lead Angstrom proposer for a given slot. Upon completion of
the Angstrom consensus protocol, all validators can encode the
settled orders determined by the consensus end state with a custom
encoding scheme to efficiently interface with the Angstrom con-
tract. They all submit the resultant encoded transactions for both
the aggregate result (inclusive of both auctions per pool) and only
the top-of-block results for block inclusion per the specification
detailed in section 2.2.

PADE Encoding To interface with the Angstrom smart contract,
the node encodes the post-consensus bundle to a byte serialization
via a Packed ABI Decodable Encoding (PADE) scheme. This format
compresses array lengths, struct fields, and certain enumerated
types in a more compact way than standard ABI encoding while
remaining unambiguous to parse. Each segment of the payload is
associated with a simple integer bitmap for variant fields or optional
fields. Lists are prefixed with a three-byte length indicator, limiting
the maximum array size but providing stable decoding in the EVM.
PADE reduces the risk of extremely large calldata footprints, which
is particularly beneficial for bundles with multiple orders and pool
updates.

A.1 Order Validation
A single address may broadcast a set of signed EIP–712 or ERC-
1271 meta-transactions (“orders”) off-chain. Each individual order
may be valid with respect to its signature, price, deadline, and gas
parameters, yet the aggregate spend of all their signed orders can
exceed the trader’s actual spendable resources, namely their:

• on-chain ERC-20 balance for the given token,
• on-chain token allowance granted to theAngstrom contract,

and
• internal protocol balance already held inside Angstrom.

Because nodes ingest orders asynchronously, two honest nodes
may observe a user’s aggregate order set in different sequences.
The validation layer must therefore deterministically decide, in-
dependent of arrival order, which subset is executable and which
orders must be parked or rejected.

High-level approach. Validation is split into three progressively
more expensive stages:

(1) Stateless checks—Verify syntax: amount and price fields
are set, gas limits are sane, max-gas is less than the mini-
mum quantity, deadlines/blocks are in the future, and the
EIP-712 or EIP-1271 signature matches the signer.

(2) Account-state evaluation—For each address, maintain
an in-memory ledger of pending spend deltas sorted by a
deterministic priority rule. When a new order arrives we:
(a) read the latest on-chain balances, allowances, andAngstrom

internal balances once,
(b) subtract higher-priority orders to obtain the live spend-

able tuple for each of the fields values, and

(c) decide whether order can be reserved without any
component going negative. If not, the order is stored
as parked together with a reason (insufficient balance,
approval, etc.).

(d) If an incoming order uses up the maximal balances for
a given address, previous valid orders at lower priority
states are updated to parked

(3) EVM simulation—For every order that passed stage 2 we
locally call the Angstrom executor inside a REVM instance
to check for runtime reverts13.

Deterministic priority ordering. To guarantee identical results on
every node, pending deltas are ordered by a strict total order:

(1) Top-of-block orders beat book orders.
(2) Higher top-of-block bids beat those with lower bids.
(3) Partial orders precede exact-quantity orders.
(4) Lower user-supplied nonce has precedence; if nonces tie,

the lower meta-transaction hash breaks the tie.
This ordering is applied whenever the pending spend delta is up-
dated, ensuring that two nodes processing the same multiset of
orders end with identical reservation ledgers, even if their arrival
orders differ.

A.2 Matching at 𝑝𝑒
The subset-sum algorithm used to determine the allocation at the
post-bisection clearing price, 𝑝𝑒 operates on integers. To convert
between floating point representations of order quantities submit-
ted by users and the integer representation for which the algorithm
operates, a sufficiently granular protocol lot size is chosen; well-
formed orders ascribe to this lot size, which is enforced as a check
in the off-chain validation pipeline.

Let
𝑆 = {(𝑘𝑖 , 𝑒𝑖 )}𝑛𝑆𝑖=1, 𝐷 = {(𝑘 𝑗 , 𝑒 𝑗 )}𝑛𝐷𝑗=1

denote asks (supply) and bids (demand), where each element con-
sists of an integer kernel 𝑘 > 0 and a non-negative tail elastic
capacity 𝑒 (exact orders have 𝑒 = 0). Define

𝑀 = min
(∑︁
𝑖

𝑘𝑖 ,
∑︁
𝑗

𝑘 𝑗

)
.

A pair of index sets (S,D) is feasible iff∑︁
𝑖∈S

𝑘𝑖 −
∑︁
𝑗∈D

𝑘 𝑗 ≤
∑︁
𝑗∈D

𝑒 𝑗 ,∑︁
𝑗∈D

𝑘 𝑗 −
∑︁
𝑖∈S

𝑘𝑖 ≤
∑︁
𝑖∈S

𝑒𝑖 .

The first inequality is the case that demand is short, while the
second inequality is the case where supply is short. The goal is to
maximize the cleared volume

𝑉★ = max
(S,D) feasible

(∑︁
𝑖∈S

𝑘𝑖 ,
∑︁
𝑗∈D

𝑘 𝑗

)
,

breaking ties so that allocations using the largest total tail capac-
ity are preferred; any remaining ties are resolved by the smaller
Angstrom order ID.
13The sender address can be on the blacklist for a certain Angstrom-supported ERC-20,
in which case their order seems semantically valid without the EVM simulation. Upon
simulation, a revert upon the transferFrom call is correctly exposed.
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Dynamic-programming tables For every 𝑣 ∈ [0, 𝑀] keep three
structures

reachS[𝑣] ∈ {0, 1},

tailS[𝑣] ∈ N≥0 ∪ {−1},

predS[𝑣] ∈ {−1} ∪
(
tx_id × [0, 𝑀]

)
,

where
• reachS[𝑣] = 1 iff 𝑣 is attainable as a sum of kernels,
• tailS[𝑣] is the maximum unlocked tail capacity of any such

subset (or −1 if unreachable),
• predS[𝑣] = (tx_id, 𝑣prev) records the Angstrom order ID tx_id

that last updated 𝑣 and the predecessor volume 𝑣prev; predS[0] =
−1.
The forward pass in Algorithm 3 initializes reachS[0] = 1 and

tailS[0] = 0 and then iterates through the orders. Whenever an
order (𝑘, 𝑒) with order ID tx_id extends a reachable state 𝑣 to
𝑣 ′ = 𝑣 + 𝑘 (lines 6–18 of Algorithm 3) we apply the following
tie-break rule:

(1) if reachS[𝑣 ′] = 0, accept the update;
(2) else if the new tail budget 𝑡 ′ is strictly larger than the stored

tailS[𝑣 ′], accept;
(3) else if 𝑡 ′ = tailS[𝑣 ′] but 𝑒 is larger than the tail of the

order already stored at 𝑣 ′, replace it;
(4) else if 𝑡 ′ = tailS[𝑣 ′] and 𝑒 equals the tail of the order

already stored at 𝑣 ′, and tx_id is smaller than the Angstrom
ID of the stored order, replace it;

(5) otherwise keep the existing state.
This guarantees that, among all subsets realizing 𝑣 ′, we retain

the one that frees the most elastic capacity and, secondarily, the one
that brings in the largest single-order tail, which directly maximizes
the slack exploitable in the subsequent volume search.

An identical pass constructs reachD, tailD, predD for the de-
mand side.

Volume search The tables feed into the maximization

(𝑉★, 𝑣★𝑆 , 𝑣
★
𝐷 ) = max

𝑣𝑆 ,𝑣𝐷≤𝑀
reachS[𝑣𝑆 ]=1
reachD[𝑣𝐷 ]=1

𝑓 (𝑣𝑆 , 𝑣𝐷 ),

𝑓 (𝑣𝑆 , 𝑣𝐷 ) =



𝑣𝑆 , 𝑣𝑆 = 𝑣𝐷 ,

𝑣𝑆 , 𝑣𝑆 > 𝑣𝐷 ∧ 𝑣𝑆 − 𝑣𝐷 ≤ tailD[𝑣𝐷 ],
𝑣𝐷 , 𝑣𝐷 > 𝑣𝑆 ∧ 𝑣𝐷 − 𝑣𝑆 ≤ tailS[𝑣𝑆 ],
0, otherwise.

We scan all reachable pairs and return the tuple (𝑉★, 𝑣★
𝑆
, 𝑣★
𝐷
).

Back-tracking and tail allocation Algorithm 4 walks the prede-
cessor maps from 𝑣★

𝑆
back to 0, recovering the transaction IDs for

the transactions that formed the kernel subsets S★. The algorithm
to find D★ from 𝑣★

𝐷
is analogous.

Only partial orders in these sets unlock their tails. If a gap re-
mains (𝑣★

𝑆
≠ 𝑣★

𝐷
), it is filled by the unlocked tails on the short side,

resolved pro-rata on elastic volume over all partially-fillable orders
that were cleared; any remaining tail inventory is left unfilled and
does not carry over to future blocks: the order is exhausted.

Complexity Table construction is𝑂 ((𝑛𝑆 +𝑛𝐷 )𝑀/64) bit operations,
volume search𝑂 (𝑀2/64) in theory but𝑂 (𝑀/64) in practice thanks
to 64×64 word compression and early exit once the scan falls below
the incumbent 𝑉★.14

Note that subset-sum, evenwith slack, is known to beNP-complete.
Our algorithm is exponential in the worse case input-length 𝑁 (as
𝑀 ≤ 2𝑁 ), but on realistic batches to be cleared at the final price,𝑀
is not impractically large.

Algorithm 3 Subset-Sum Forward Pass (for 𝑆)
1: Input: kernels {𝑘𝑖 }, tails {𝑒𝑖 }, capacity𝑀
2: Output: boolean array reachS, tail budget tailS, predecessor map

predS

3: reachS[0..𝑀 ] ← 0; tailS[0..𝑀 ] ← −1; predS[0..𝑀 ] ← −1
4: reachS[0] ← 1; tailS[0] ← 0 ⊲ base state

5: for all orders (𝑘, 𝑒 ) in 𝑆 with ID tx_id do
⊲iterate backward so each order is used at most once

6: for 𝑣 = 𝑀 − 𝑘 downto 0 do
7: if reachS[𝑣 ] = 1 then

⊲ add current kernel and its tail capacity
8: 𝑣′ ← 𝑣 + 𝑘 , 𝑡 ′ ← tailS[𝑣 ] + 𝑒
9: if reachS[𝑣′ ] = 0 or 𝑡 ′ > tailS[𝑣′ ] then
10: reachS[𝑣′ ] ← 1; tailS[𝑣′ ] ← 𝑡 ′

⊲ remember who (tx_id) and from where (𝑣)
11: predS[𝑣′ ] ← (tx_id, 𝑣)
12: else if 𝑡 ′=tailS[𝑣′ ] and tx_id<predS[𝑣′ ] .tx_id then
13: predS[𝑣′ ] ← (tx_id, 𝑣)
14: else
15: continue
16: end if
17: end if
18: end for
19: end for

Algorithm 4 Recover Supply Subset from predS

Require: target volume 𝑣★, predecessor map predS
1: S ← ∅
2: while 𝑣★ > 0 do

⊲ order tx_id was last added
3: (tx_id, 𝑣prev) ← predS[𝑣★]
4: S ← S ∪ {tx_id}
5: 𝑣★← 𝑣prev ⊲ jump to predecessor state
6: end while
7: return S ⊲ Set of Angstrom order IDs clearing 𝑣★

B Consensus
The following section assumes |V| = 2𝑓 + 1 with at most 𝑓 Byzan-
tine validators and the Δ–synchrony model of section 2.1.

First, we define the consensus trace object, which is gossiped by
the leader after the slot as the final step in the consensus procedure.
14For lot sizes in the millions, the dynamic program runs in under 1 m.s. in practice.
The Angstrom validator network can impose lot size as part of order validation to
optimize between order granularity and clearing performance.
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The trace object is a necessary precursor for both the fault specifi-
cations defined in appendix B.2 and formal guarantees defined in
appendix B.3.

B.1 Consensus Trace
The protocol needs a way to penalize any verifiable attempts of
contradicting signed messages throughout the procedure to ensure
no optionality can be exercised for free (see note in caption of figure
fig. 8). To ensure this, the leader must gossip the consensus trace
for their Round-4 signed object to all other validators before some
grace period (tens of blocks) after the slot.

Intuitively, the consensus trace can be visualized as a tree which
recurses through the quorum signatures of the Round-4 and Round-
3 signed objects, ending with the aggregate Round-1 signed objects
as the leaf layer. In practice, the footprint of this tree can be greatly
reduced by storing pointers to duplicate Round-1 signed objects
that appear in multiple Round-3 quorum signatures. This turns the
conceptual tree into a DAG with at most one physical copy of each
signed object. An example consensus trace is the list of (𝑚,𝜎) tuples
that form the tree pictured in fig. 7. From the consensus trace, any
node is able to verify validity of the protocol for the slot to which
the trace pertains or expose equivocation at any of the rounds.

Complexity Assume a validator set of 𝑛, a throughput parameter
𝑘 ∝ Δ-interval txs, a signature size Σ (64 bytes for ECDSA), a digest
size𝐷 (32 bytes), a transaction identifier size tx_id (< 32 bytes), and
a pointer size 𝑃 ≪ Σ. The consensus trace contains one Round-4
signed object, up to 𝑛 Round-3 signed objects, and up to 𝑛 Round-1
signed objects. The Round-4 and Round-3 signed objects now hold
𝑛 pointers (to Round-3 and Round-1 signed objects, respectively)
instead of 𝑛 full signatures. Thus, upon pointer compression, the
total byte complexity becomes

𝑂

(
𝑛(𝐷 + Σ) + 𝑛2 ·𝑃 + 𝑛𝑘 · tx_id︸     ︷︷     ︸

tree leaves

)
.

In the initial setup with small 𝑛 and large 𝑘 (from active market
making), the leaf layer dominates yielding size 𝑂 (𝑛𝑘). Should this
be prohibitive, we detail a slight modification to the consensus
protocol in appendix B.3.3 which distributes an abridged consensus
trace without the leaf layer and achieves better no-optionality prop-
erties at the expensive of worse liveness. Additionally, adding the
full consensus trace to the modified protocol raises the penalty for
exercising an option significantly (from the absence fault defined
in appendix B.2.2 to the trace censorship fault defined in appen-
dix B.2.4). The protocol can easily move to either of these modified
consensus specifications based on the frequency of exercised op-
tions as a future upgrade.

B.2 Fault Specifications
This appendix section specifies the provable misbehaviors that can
arise during the consensus protocol of Section 2. For each fault type
we (i) give a formal definition, (ii) describe the minimal evidence
to be published on-chain as a proof of fault, and (iii) reason about
viable protocol-level penalties15.

15Slashing will not be live upon initial launch but will be added as a protocol upgrade
in the future

Figure 7. The valid trace of a more succinct signature aggregation (though
equal in initial state and result) as the consensus path in fig. 2. Payloads are
included in each message by construction. Given that the payload includes

the quorum signature field which governs the tree structure, we also
picture them adjacently to provide a more explicit construction.

B.2.1 Equivocation Fault

Specification. A validator equivocates in round 𝑟 if it produces
two distinct signed objects with the same slot–identifier but differ-
ent payloads:

(𝑚,𝜎) =
(
slot, 𝑟 , X

)
, (𝑚′, 𝜎′) =

(
slot, 𝑟 , Y

)
, X ≠ Y.

Such behavior can only be malicious and thus incurs a full stake
slashing along with immediate ejection from the active validator
set.

Proof. Uploading
{
(𝑚,𝜎), (𝑚′, 𝜎′)

}
to the slashing contract is

sufficient: verification succeeds iff (i) both signatures validate un-
der 𝜈 ’s public key, (ii) both messages have identical slot and round
fields, and (iii) the payloads differ.

B.2.2 Absence Fault

Definition. Every validator 𝜈 must multicast a Round 1 signed
object by deadline𝑇 −5Δ, ensuring it gets to all honest validators by
𝑇 − 4Δ by the network synchrony assumption. 𝜈 incurs an absence
fault if at least 𝑓 + 1 validators attest that no valid Round 1 bundle
from 𝜈 was received by 𝑇 − 4Δ.

No-Bundle Attestation. Each validator 𝜌 can issue at 𝑇 − 4Δ a
statement

𝑐𝜌 =
(
slot, LateLocal, 𝜈pk

)
, 𝜏𝜌 = sign𝜌 (𝑐𝜌 ),

if and only if it has not received any signed object from 𝜈 by the
deadline.

Proof Format. An absence proof is the set

Pabs =
{
(𝑐𝜌 , 𝜏𝜌 )

}
𝜌∈𝐻 , |𝐻 | ≥ 𝑓 + 1.

The slashing contract checks that
(i) every 𝜏𝜌 verifies under 𝜌’s key;
(ii) all 𝑐𝜌 contain the same absentee public key 𝜈pk;
(iii) |𝐻 | ≥ 𝑓 + 1
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Soundness. If 𝜈 was honest and disseminated the bundle on time,
every honest validator received and could locally verify it, so no
honest validator would sign a LateLocal attestation and the thresh-
old 𝑓 + 1 cannot be reached. If 𝜈 withheld or delayed the bundle,
all 𝑓 +1 honest validators will sign LateLocal, guaranteeing that an
absentee proof can be produced.

Penalty. Angstrom imposes graded slashing proportional to the
evidence:

slash fraction = Ψabs ·
|𝐻 | − 𝑓

𝑓
,

where Ψabs ∈ (0, 1] is the maximal amount of stake loss for an
absence fault, which is taken when all 2𝑓 other validators validate
the fault.

Because absence can be caused by network partition rather than
malice, the protocol should set Ψabs based on the volatility of the
reference price process and underlying pool liquidity parameter
such that it is high enough to ensure exercising optionality (cf.
fig. 8) is not incentive compatible, while not over-penalizing honest
nodes who can potentially be randomly partitioned.

B.2.3 Final View Censorship Recall that the final view censorship
fault occurs when the elected leader fails to distribute their Round
4 signed object to other validators by 𝑇 − Δ. The proof for this
fault follows immediately from the absence fault, except LateFinal
replaces LateLocal in the second field of the message tuple to be
signed. The proof format, slashing contract criteria, and soundness
arguments remain the same. Final view censorship is deemed more
malicious than absence given the increased responsibilities and
extractable value for the leader in a given round, but can still arise
from a network partition; therefore, Angstrom imposes a similar
grading slashing, proportional to the evidence, with the maximal
slashing amount increasing to twice that of the absence fault.

B.2.4 Trace Censorship/Data Witholding Fault This fault occurs
when the leader for a given slot fails to distribute a consensus trace
for their Round-4 signed object to other validators prior to the
expiry of a protocol-defined grace period, or if they distribute a
malformed trace16.

The attestation process for this fault also follows from the ab-
sence fault, except TraceFault replaces LateLocal in the second
field of the message tuple to be signed. The proof format, slashing
contract criteria, and soundness arguments remain the same. This
fault is deemed more malicious than both absence and final view
censorship, as the protocol defined grace period can be arbitrarily
long such that even after recovering from a partition, the leader
will be able to send other validators a valid consensus trace and
avoid penalization; therefore, Angstrom imposes a grading slashing,
proportional to the evidence, with the maximal slashing amount
increasing to values on an order of magnitude higher than the
absence fault’s penalty.

16A Byzantine leader, attempting to conceal a bid-shade, can withhold messages from
their trace to prevent any other validator from exposing their equivocation to the
slashing contract

B.3 Formal Guarantees: Censorship Resistance,
and No-Optionality

B.3.1 Censorship Resistance

Lemma B.1 (Inclusion of honest orders). Let tx′ be any order
broadcast by an honest validator during Round 0 of slot 𝑠 . Then tx′

must be considered in the calculation of the final MergeDigest★ for
that slot.

Proof. Two cases:
(i) tx′ received before 𝑇 − 6Δ. It is present in every honest

validator’s local multisetM𝜈 and therefore in every LocalDigest𝜈 .
Because these digests are inputs to BuildMerge, tx′ is necessarily
in every honest validator’s merged multiset, and thus included in
their Round-3 signed object. Since the leader must chose 𝑓 + 1 of
these Round-3 signed objects to produce a canonical view, they
must chose at least one multiset from an honest validator (as there
are only 𝑓 Byzantine validators). It follows that tx′ must be part of
the union of orders involved in calculatingMergeDigest★ for the
slot.

(ii) tx′ received in [𝑇 − 6Δ, 𝑇 − 5Δ). It may reach only the
originating honest validator before 𝑇 − 5Δ, but that validator for-
wards tx′ inside its recent field in the payload for its Round 1 signed
object. Since it’s included in the validator’s Round 1 signed object,
it reaches every other honest validator before Round 3, so the order
is included in each honest validator’s Round-3 signed object by
construction. Following the same line of reasoning as (i) ensures
tx′ is included in any set of Round 3 signed orders which the leader
uses to computeMergeDigest★. □

B.3.2 No-Optionality

Lemma B.2. If there are no absence faults, every honest validator
finalizes the sameMergeDigest′ within slot 𝑠 which corresponds with
their Round 3 signed object’sMergeDigest. If the leader is honest, this
MergeDigest′ will be the MergeDigest★ for the slot.

Proof. All Round-1 messages reach at least one honest validator
by𝑇 − 4Δ (due to the no-absence assumption) and, by Δ-synchrony,
reach every honest peer before 𝑇 − 3Δ. Consequently every honest
validator possesses the identical set S (1)hon when Round 3 begins,
and therefore computes a common MergeDigest★. Each honest
validator includes this digest in its Round-3 signed object.

An honest leader will then aggregate the 𝑓 Round-3 signed
objects from other honest nodes that agree with their Round-3
MergeDigest′ to produce the Round-4 signed object which neces-
sarily hasMergeDigest★ = MergeDigest′. □

Theorem B.3 (No “free option”). Denote txopt as the transaction
which a Byzantine leader hopes to have an option on. The leader is
unable to exploit the consensus protocol to create two sets of 𝑓 + 1
Round-3 signed objects where one set includes tx′ and the other does
not without at least committing an absence fault.

Proof. For the leader to avoid absence, they must send their bid
view to at least one honest validator by the 𝑇 − 4Δ deadline. Since
they want an option on txopt, their bid view must also include this
transaction. By lemma B.2, all honest validators will possess the
transaction in their set when constructing their Round-3 signed

18



Angstrom v1 Whitepaper

At , calculate profit maximizing
buy(s) to insert: 

Create Round 1 and Round 3 signed objects
just-in-time from the following payloads:

Use the Round 3 signature derived from
the payload above, along with either of the
other validators' Round 3 signatures to
compute the final signed object (which
includes  in its state commitment
digest) from the following payload:

 computes  with current valid orders
and looks at reference price, , inserting

a buy order, , if  or 
a sell order, , if 

 abstains from sending a
Round-1 signed object to allow
them to exercise the Round-4

option without facing
equivocation

Figure 8. Byzantine leader 𝜈1 is able to hold the right to an option by committing an absence fault, not sending their Round-1 signed objects to other
validators. At Round-4, they’re able to compute the profit-maximizing transaction(s) to insert based on the external reference price by creating their Round-1
and Round-3 signed objects just-in-time (after their respective deadlines and immediately prior to the Round-4 deadline). Their resultant consensus trace
appears valid to all observers. Note: Without the distribution of the consensus trace, the Byzantine leader would have a free option by sending their Round-1
view in its initial state to 𝜈2 and 𝜈3 prior to the𝑇 − 4Δ deadline, but shading that view just before Round-4 to insert profitable transactions. Without the

consensus trace, there is no way for either 𝜈2 or 𝜈3 to prove they equivocated, as they would not have the alternative Round-1 message or signature that was
produced just-in-time to send to the slashing contract with the contradicting message they received prior to𝑇 − 4Δ as proof of equivocation.

object. Since there are 𝑓 + 1 honest validators, 𝑓 + 1 Round-3 signed
objects will include txopt. For the leader to create another set of 𝑓 +1
signed objects that do not include tx′ would require an honest node
to equivocate, contradicting the honesty assumption. Thus, absence
is the minimal fault required to hold the right to an option. □

It’s important to note that the result of theorem B.3 implies that
the leader must decide whether or not they want to hold the right to
an option ex-ante, prior to market conditions upon the finalization
of their Round-4 view being readily apparent.Without this property,
Byzantine validators would be able to exercise a risk-free option by
feigning absence whenever the value from exercising the option
outweighs the absence penalty.

B.3.3 Protocol Modifications to Limit Optionality We can make a
slight modification to the existing protocol to limit optionality and
remove the need for distributing the Round-1 signed objects as part
of the consensus trace upon a slot’s finalization by simply requiring
the ≥ 𝑓 +1 Round-3 signed objects that a leader includes to compute
MergeDigest★ to all have equal values for theirMergeDigest. All ≥
𝑓 +1 Round-3 objects in this tracemust share the sameMergeDigest;
validating this, along with verifying the signatures themselves, is
enough to ensure no malfeasance.

Theorem B.4 (No “free option” (alternate protocol)). In
a slot with 2𝑓 + 1 validators and at most 𝑓 Byzantine actors, no
two distinct digests MergeDigest★ ≠ MergeDigest† can each gather
a valid Round-4 commit containing 𝑓 + 1 distinct signatures, without
an attributable fault being committed.

Proof. By Lemma B.2, if there is no absence, every honest val-
idator signsMergeDigest★ in Round 3. Any quorum of 𝑓 + 1 signa-
tures therefore contains at least one honest signature. Suppose, for
contradiction, that a second digestMergeDigest† ≠ MergeDigest★

also obtains 𝑓 + 1 signatures. Among them must be an honest signa-
ture, forcing an honest validator to have signed two different digests
in the same round, committing an equivocation which contradicts
the honest node assumption.

A Byzantine leader cannot fabricate MergeDigest commitments
for the Round-3 signed objects of other validators, as the entire
Round-3 signed object is distributed in the minimized consensus
trace after the protocol’s finalization, or the leader faces the far
steeper trace censorship fault. □

The value of optionality for this protocol specification is also
strictly less than that of the original protocol. This is because the
modified protocol similarly requires that the Byzantine leader com-
mits to an absence fault before the realization of potentially prof-
itable external information, but it also necessitates that they commit
to the specific transactions to include at time𝑇 −3Δ instead of being
able to compute the profit maximizing transactions at 𝑇 − 2Δ as
in the original protocol. The specific breakdown of the process a
Byzantine leader must go through to hold an option is broken down
in fig. 9.

Additionally, including the full consensus trace with themodified
protocol is enough to ensure that the minimum fault to hold the
right to an option is the costly trace censorship fault, as the process
required to hold the right to an option requires equivocation in
Round-1 of the protocol should the option need to be exercised (in
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 gossips their Round-1 signed
message (with  added to
their set) to only . It is sent
with a delay such that  is

unable to rebroadcast it to 
prior to  sending their Round-

3 signed object to 

 looks at the reference price, , and
sees if including  is profitable.  forms
the Round-4 payload with quorum signatures

 if inclusion is profitable and

with  if not

Figure 9. Byzantine leader 𝜈1 sends their Round 1 signed object that includes a late order to one honest node, 𝜈2, such that they receive it at𝑇 − 3Δ − 𝜖 . The
honest node will include it in their merged view, allowing the Byzantine leader to produce two different, valid MergeDigest★ based on whether they include
the targeted honest node’s MergeDigest or that of another honest node. In either case, the Byzantine consortium is able to maintain an option, but they must
pay the cost of an absence fault and commit to their option ex-ante to hold that right. The absence fault follows from all 𝑓 + 1 honest nodes attesting to not
seeing the Byzantine node’s Round 1 signed object prior to the𝑇 − 4Δ deadline. Note: If the leader backs out of the Round-1 view they submitted to 𝜈2 upon
the inclusion of tx 15 being unprofitable based on 𝑆𝑇 −2Δ , the consensus trace still looks valid to 𝜈2 despite 𝜈1 equivocating by signing two different Round-1
messages. This is due to the fact that the abridged consensus trace does not include the Round-1 signed objects that 𝜈2 would need to provide to the slashing

contract, along with the divergent Round-1 signed object they received from 𝜈1 at𝑇 − 3Δ − 𝜖 , to prove malfeasance.

addition to absence), which can be verified by requiring distribution
of the unabridged consensus trace after the protocol finalizes.
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